NAME:	INDEX NO:	
SCHOOL:	SIGNATURE:	

535/1
PHYSICS
Paper 1
August, 2019
2 ½ hrs

UNNASE MOCK EXAMINATIONS

Uganda Certificate of Education

PHYSICS

PAPER 1

TIME: 2HOURS 15MINUTES

INSTRUCTIONS TO CANDIDATES

- Write your name, signature, centre and index number clearly in the space above.
- **Section A** contains **40** objectives –type questions. You are required to write the correct answer **A**, **B**, **C**, or **D** against each question in the box on the right hand side.
- **Section B** contains **10** structured questions. Answers are to be written in the spaces provided on the question paper.
- Where necessary use:
 - i) Acceleration due to gravity = 10ms⁻²
 - ii) Specific heat capacity of water = 4200 Jkg-1K-1
 - iii) Specific heat capacity of cupper = 400 Jkg-1K-1

For Examiner's use only

41	42	43	44	45	46	47	48	49	50	MCQ	Total

1.	The main function of a step-u	p transformer	r is to	
	A. Increase current B. Increase voltage			
	C. Change alternating current to a			
2.	A bimetallic strip operates on A. Radiate heat at different r		s that metals	
	B. Absorb heat at different rates C. Expand at different rates D. Reflect heat at different ra			
3.	A galvanometer can be conver resistor of A. high resistance in series		meter if its connected	to a
	B. high resistance in parallel C. low resistance in series D. low resistance in parallel	1		
4.	A 1200 W kettle contains 2 kg take to heat the water to 85°C is absorbed by the water?			
	A. 7.0 minutes C.420 minutes	B. 8.75 n D. 525 m		
5.	A converging lens acts as a mais	agnifying glas	s when the object	
	A. at the principal focus C. beyond 2F		en F and 2F en the lens and F	
	Air occupies a volume V ₁ m ³ at volume whenthe pressure chan	ges to P2 pa a		
	A. $\frac{P_1 P_2}{V_1}$ B. $\frac{V_1 P_2}{P_1}$	C. $\frac{P_1V_1}{P_2}$	D. $P_1V_1P_2$	
7.	The force a body needs to mov A. centripetal force towards th	ne centre	nt speed in circle is,	
	B. centrifugal force towards the C. centrifugal force away from D. centripetal force away from	the centre		
	An object is placed between tw N images are formed. Calculat			ner.
	$360^0 + N + 1$	B. $\frac{360^{\circ}}{N+1}$		
($\frac{N+1}{360^0}$	D. $\frac{360^{\circ}}{N}$ – 3	1	

9. A body X moving a				nass	
and the two move t					
A. 1ms ⁻¹ B. 2n	ns ⁻¹	C. 3ms ⁻¹	D. 6ms ⁻¹		
10. The mass of a sam	-		_		
of iodine -131 is 8 of	days, find the	mass rema	aining undecayed afte	r 32 days.	
A. 25g E	3. 50g	C. 100g	D. 200g		
11. Mosquito larvae c	ling to water	surfaces be	cause		
A. it's less dense t	_	surfaces se			
B. of surface tensio					
C. of repulsion force		· molecules			
D. of attraction from					
D. of attraction from	ii iiioiccuics a	above the w	ater surface		
12. Which of the follow	vina atatamar	ita ara triia	about a longitudinal	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	_		O		
•		_	o the direction of the		
•	_	_	eles are closely packed	1.	
	s the distance	e between a	compression and a		
rarefaction	-		•••		
A. (i) only		3. (i) and (ii	ii) only		
C. (ii) and (iii) only	L). (iii) only			
13. A list of electrical	appliances v	vith their v	voltages and ratings i	s shown	
below:					
Appliance	Power rating	g	Voltage		
Car head lamp	48W		12V		
Electric drill	260W		250V		
Bedside lamp	50W		250V		
Electric iron	1500W		250V		
Breetre non	1200				
Which appliance ha	as the highest	t resistance	25		
A. Electric drill		car head la			
C. Electric iron		Bedside la	-		
C. Dicettic from	D.	Deaside iai	iip		
14. Total internal refl	ection occurs	when			
A. the angle of incident			angle		
B. the angle of incident	-		9		
	_		_		
C. the angle of inci					
D. the angle of inci-	defice is equa	i to the ang	gie of refraction.		
15 Afine alarm noted	0400 1 5 1-7	W mins for	10hm a day If the	anat non	
15. Afire alarm rated			•	-	
			cost of running the al	arm.	
A. shs 270		3. shs 2400			
C. shs 3800 D. shs 5700					
				<u> </u>	
16.When the pressure	of 8m³ of gas	s at -73ºC i	s increased to three t	imes	
the original value,	, the tempera	ture becon	nes 27°C . Calculate	the new	
volume of the gas.	_				
A. 1.8m ³ B. 4	4.0m ³	C. 5.3m ³	D. 12.1m ³		

How will the rays be affected by the magnets?

- A. They will be deflected into paper
- B. They will not be deviated
- C. They will be deflected out of paper
- D. They will be repelled backwards
- 18. Moment of a couple is defined as the product of
 - A. the sum of clockwise moments and anticlockwise moments
 - B. one force and the perpendicular distance from the pivot.
 - C. forces and the perpendicular distance between the forces
 - D. one force and the perpendicular distance between the forces.
- 19. The refractive index of water is 1.33. The angle of refraction for a ray incident at 41.70 is?
 - A.300
- B. 29.40
- C. 19.5°
- D 180

20.

The figure above shows an electrical symbol for a

A. cell

B. resistor

C. rheostat

D. resistance box

- A. withdrawing a magnet from inside the coil
- B. pushing a magnet into a stationary coil
- C. moving a coil over a stationary magnet
- D. a steady current flowing through the coil

22. The figure below shows sound produced in a resonance tube closed at one end.

If the frequency of the sound produced is 320Hz: Calculated the length, L of air column, if the speed of sound in air is 320ms⁻¹.

- A. 0.25m
- B. 0.5m
- C. 1.0m
- D. 2.5m

	_	tements is /are t		· · · · · · · · · · · · · · · · · · ·
i) when idei individual		in parallel, the	total e.m.f is the s	sum of
ii) In a lead		ntor, the lead o	exide acts as the p	ositive
•		total p.d across	the external and in	nternal
resistance A. (i) only		B. (i) and	d (ii) only	
B. C. (ii) and	(iii) only	D. (i), (ii)	` ,	
	on of induced cu predicted by app		uctor moving in a ma	agnetic
A. Faraday			left hand rule	
C. Lenz's la	W	D. Fleming's	right hand rule	
	•	•	load of 0.4N hangs from a further extension	
1.5cm?		-		
A. 0.8N	B. 1.0N	C. 1.2N	D. 8.0N	
		are connected as ce across the 3Ω	s shown in the figure resistor.	below.
	18V	lı .		
	30	60		
A. $\frac{9 \times 6}{18} V$	B. $\frac{18 \times 6^2}{9} V$	C. $\frac{60}{9\times3}$ V	D. $\frac{18 \times 3}{9} V$	
	•	s round an obstac	cles is known as:	
A. depression C. interferen		B. refraction D. diffraction		
C. Interferen	ce	D. diffaction		
•	n inelastic collis			
		but kinetic energ inetic energy is co		
		d, but not mome		
D. Momentu	m and kinetic ei	nergy are conserv	red.	
29. If a bar n	nagnet is broken	into several piec	es;	
A. magnetism		-		
-	always repel ea e pieces become			
			ne other half S-pole	

30. The frequency of the third harmonic in an open pipe is 660Hz. Find the length of the air column if the speed of sound in air is					
330ms ⁻¹ . A. 0.75m	B.1.2m	C. 0.85m	D. 1.0m		
	ılt to start and	d difficult to stop.	notices that a loaded Which of the followin		
A. Friction C. inertia		B. density D. energy			
			2V for laboratory use number of turns in		
A. 25turns C. 480 turns		B. 30 turns D. 12,000turns			
33. In a hydraulic applied is made A. obtain pressure	e smaller in o	rder to	on which the effort is	s	
B. transmit pressu C. transmit a force D. facilitate the m	ure throughou e large enoug	ut the liquid h to the load	d		
34. An electro-mag i) the core is ma ii) the current in	ade of steel		ength will increase if	·	
iii) the number of A. (i) and (ii) only C. (i) and (iii) only		coil is increased B. (ii) and (iii) only D. (i), (ii) and (iii)	7		
35. Which of the	following mak	tes a pair of compl	imentary colours?		
A. blue and yellowC. green and yello		B. yellow and D. green and	- C		
resistance of 29	Ω. Calculate t	he resistance that	ection and has a coil should be connected s 15V at full scale	d to	
A. 100 ΩC. 298 Ω		B. 280 Ω D.980 Ω			
37. Power losses in i) laminating	n a transform	er are minimized l	ру		
ii) using thick cop	per wires in v	vinding			
iii) using wires wit	_	_			
iv) using different A. (i) and (ii) only	number of tu	rns in primary and B. (i),(ii) and	-		
C. (i),(iii),(iv)		D. (i),(ii),(iii),	` '		

33	235 92	U	$\Rightarrow {}^{141}_{56}Ba + {}^{92}_{36}B$	Xr + 2x	
	Ident A. pr C. be	•		B. neutron D. alpha particle	
	A. M. C. W. A. ti a tap dot is What A. 6.	sported from ear ass eight cker timer make be through the time	s 50 dots pomer, the distance betweet the B. 1	B. Volume D. Density er second. When a betance between the thween the fourth and body? 0 ms ⁻²	ody is pulled by nird and fourth
41.	(a) 	a concave lens.		ON B a parallel beam of lig	(1mark)
	(b)	Name two devic		a convex lens.	(1mark)
	(c)	Air Salt Water	300	180	
	Use 1	the diagram to fi	nd the refra	ctive index of salt wa	ater.(2marks)

42.	(a)	(2 marks)	
		A -1	
	(b) 	Aglass marble of mass 20g moving at 5ms ⁻¹ collider ball of mass 50g at rest. The glass marble rebovelocity of 2ms ⁻¹ . Find the velocity of the stee collision.	ounds with a sel ball after (2 marks)
43.	 (a)	State the law of electrostatics .	(1mark)
	(b)	Name two uses of a gold-leaf electroscope?	 (1mark)
	(c)	Explain what happens when a cap of a negatively leaf electroscope is earthed.	charged gold (2 marks)
44.	(a) 	What are x-rays ?	(1mark)
	(b)	Mention one medical useful property of x-rays.	(1mark)
			•••••

	works. (2	marks)
 	Define the term yield point .	(1mark)
(b)	State one application of Hooke's law.	(1mark)
(c)	A spring has one end fixed and a string attached to in the string is pulled down by a force of 50N extension of 10cm. Find the spring constant. (2	causing an
 . (a)	What is heat.	(1mark)
(b)	Name two physical properties of a substance that to increase in temperature?	 change due (1mark)
(c)	Un calibrated thermometer reads -2cm when its but in pure melting ice, 10cm when in stem from pure both Find its reading when in contact with a substance at (2)	oiling water.
		•

47.	(a) 	What is a longitudinal wave .	(1mark)
	(b)	(i) Draw a diagram of a closed tube producing of 1st harmonic.	g a sound note (1mark)
		(ii) If the air column in (i) above is 30cm wavelength of the sound note produced.	•
48.	(a)	What is meant by second class lever ?	(1mark)
	(b)	Why is the velocity ratio of a single moving pulley that of a single fixed pulley.	y different from (1mark)
	(c)	A uniform beam 3m long is pivoted at a point 1 r to be used as a craw bar to carry a load of 12 minimum effort needed to balance the bar horizon	ooN. Find the
49.	(a) 	What is a volt?	(1mark)
	•••••		

(b)	Name two types of secondary cells.	(1mark)
conr	identical cells each e.m.f 1.5V and internal resistance nected in series with another cell of e.m.f 4.5V are stance 1Ω as in figure above.	
Find	I the reading of the ammeter when switch s is closed. (2	2marks)
(a)	State the law of flotation.	(1mark)
(b)	Give a reason why some objects float and others sink	in water. (1mark)
(c)	A wooden cube 6cm long floats in water with $\frac{1}{3}$ of it of Find the upthrust acting on the cube. (2)	 ut of water. marks)

**** **END** ****